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ABSTRACT

In this paper we study the Riemann Problem for a system of conservation
laws which exhibit internal friction similar to that seen in viscoelastic
solids of the maxwell type. The solutions we obtain have a single shock and a
single contact discontinuity and off of these singular curves they are
smooth, The results we obtain are two fold. First we show this problem is
globally solvable in time; this requires precise a-priori estimates for the
solution off of the sinqular curves. Secondly, we ohtain asymptotic or large
time information ahout the solution which quarantees that in a weak sense it

converges to special traveling wave solutions of the equations with compatible

data.
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SIGNIFICANCE AND EXPLANATION

Problems arising in continuum mechanics are often modelled by systems of
conservation laws. For perfect materials such as an elastic solid or an ideal
gas, these balance laws, when adjoined with the constitutive equations
describing the material, lead to systems of nonlinear hyperbolic partial
differential equations in which the characteristic speeds are dependent on the
amplitudes of the motion. Such systems have the property that nonconstant
disturbances are amplified and solutions which were initially smooth develop
discontinuities in finite time. It is well-known that this loss of reqularity
can be prevented if viscous frictional forces are incorporated into the
constitutive assumptions describing the material.

A different situation obtains when the constitutive assumptions of a
perfect material are modified to account for long range memory effects but
viscous forces are neglected. The following results are typical: (i)
solutions generated by small amplitude, smooth data persist for all times and
decay to a rest state as time proceeds to plus infinity, and (ii) solutions
generated by large amplitude, smooth data develop discontinuities in finite
time. In a word, these results show that for small data the damping generated
by the memory effects competes favorably against the destabalizing mechanism
generated by the nonlinearity in the system while for large disturbances the
reverse is true,

It is also well-known that such memory like continua support
nonequilibrium solutions called traveling waves. These solutions have a
richer structure than their counterparts for perfect materials. In the latter
case, such traveling waves are piecewise constant solutions separated by a
shock wave advancing at constant speed. What is not known is whether these
traveling wave solutions are stable for memory like continua.

The purpose of this paper is to study a model system consisting of a
single conservation law adjoined to a constitutive equation of the memory
type. This system supports traveling waves similar in structure to those seen
in real systems of actual interest. What we are able to show is that the
solution of this system with piecewise constant initial data (the Riemann
Problem) converges, albeit in a weak sense, to the traveling waves. In the
process of establishing this result a number of techniques are developed which
should be helpful in examining more realistic systems.
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THE RIEMANN PRORLFM FOR THE SYSTEM u, + cx =0 and (0 - f{u)), + (0 - uFlar) = 0

* ,
Jo M, Greenherq" and ling H51a02

t. Introduction

In this note we consider the system

up + ax =0, and (R)
(0 - f(u)), + (0 ~ uf(u)) =0 (C)

where 0 ¢ 4 <t and f satisfies
f(0) =0, 0 ¢ £'(u), and n < f"(v), O < u . (1.1)

Other assumptions will be imposed on f as they are required, This system serves as a
model for the equations of motion of a viscoelastic solid. In this analogy (BR) represents
the bhalance law and (C) the constitutive equation, 1In fact we take (C) to he the same as
the equation representing a nonlinear-maxwell solid (1,2). The relation of the system (B)
and (C) to the equations of motion for a maxwell solid are the same as the relation of the
Hopf equation, u, + (%3) = 0, to the equations of motion for an ideal gas; namely 1n
certain situations the re:pective reduced equations approximately describe what is
happening in the full system and, as importantly, thev provide one with some intuition
ahout the more complicated systems,
Nur interest is in the Riemann Problem for (B) and (C); that is in solutions nf (R)
and (C) which assume the following data at t = O:
(u_,uf(u_)), x <0
(u,0)(x,0) = (1.2}
(0,0), x >0,

Here, u_ > 0. This svystem is hvperbolic. 1t has one nondegenerate characteristie field
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which propagates with speed f'(u) and one linearly degenerate field, namely the lines
x = constant. In regions where (u,0) 1is smooth, (B) and (C) are equivalent to
o, + f'(u)ox + (1 - p)o - up = 0, and (g)

¢, - (1 - plo + pp =0, (¢$)

t
where i@, g, and u are related by
9 = £(u) - 0 or equivalently u =f (0 + ¢) . (w)
The syscem (B) and (C) also supports traveling waves which assume the data

(u_,uf(u_)) and (0,0) at x equal minps and plus infinity respectively, Since these
waves will play an important role in what follows we record their properties now. A
traveling wave which meets the aforementioned boundary conditions is a solution of (B) and
(C) which is a function of Tt =t - x/c where

uf(u_)

€ =—0- (1.3)

The u component of this solution satisfies

:—’ (£(2) - cu) = (cu - pE(D)) (1.4)
T
and the limit relations
lim u(1) = 0 and  lim 4(7) = u_ . (1.5)
T+ T4

J and ¢ are obtained from ; by
g(1) = cu(t) and #(T) = £(3(T)) - cu(T) . (1.6)
The results for traveling waves are summarized below:
{a) When c ¢ f'{0) there is a unique (to within a translation), smooth, strictly
increasing solution of (1.4) satisfying (1.5).
(h) When c¢ > £'(0) there is a nondecreasing weak solution of (1.4) which is
unique to within a translation. The particular solution with a jump

discontinuity at T = 0 hasg the following additional properties:

(i) Wryzo, =<cten,
(ii) lim+ ;(r) = u, where u, > 0 is the unique solution of
™0
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f(u,) = cu,, and (1.7)

(iii) ;(r) satisfies (1.4) on (0,®) and meets the boundary condition (1.5)
at plus infinity.

The global (in time) existence question for the Riemann Problem (B), (C), and (1.2) is
easily resolved, One may either use a fractional step variant of Glimm's method [3] or the
finite difference approach used by Greenberg (4] for a system of integro-differential
equations of which (B) and (C) are a special case., Using an iteration scheme and the
contraction mapping principle it is also relatively easy to show there is some time

Tpax > 0 such that u, 0, and ¢ have the following properties:

(1) (u,0,6) = (u_,uf(u ), (1 - Wf(u_})) for x <0 and 0 < t < Tpax /

) curve x = g(t) with ds > 0 such that

(ii) there is a c’to,r It

max

1

(u,0,¢) is C' and satisfies (B), (C), (0), (¢), and (u) on

0 <x <8(t) and 0 ¢ t < Toax?

(iii) (u,0,4) = (0,0,0), x > s(t) and 0 < t < Tnax’

(iv) the line x =0, 0 < t < Tn is a contact discontinuity and the

ax’
following limit relations obtain:

lim  (u,0,¢)(x,t) = (uo(t),uf(u ),oo(:)) (1.8)
x+o0' -

where uo(‘) is defined implicitly by

ut

flugle)) = ueu_je ™ + £u 11 - o™ (1.9)

and

e {(1.10)

0,(t) = (1 = fu ) - e
(v) the curve x = s(t), O <t Thax' is an admissible shock wave and
satisfies the Rankine-Hugoniot conditions for (B) and (C); namely the
relations
lim  (u,0,8)(x,t) = (U(t),E(U(L)),0) , (1.11)

x*s{t)
x<3(t)




uce) > ol , 1.12)

and

ds f(u(e))
at  u(e)

and s(0) = 0 ; (1.13)
(vi) in the region 0 < x < s{t) and 0 < t < Thax the following
inequalities ohtain:
0O<¢ucu, 0<¢<ouf(u), and 0 < ¢ < (1 - p)f(u_), and (1.14)

0 < Yy, 0 <o

’0<¢:'“x

¢ < n, ox < 0, and ¥y < 0. (1.15)

One qoal of this investigation as to establish conditions which guarantee that
T, = #°« Our results take two forms, When u_ 1is small we are able to obtain uniform
bounds for the t and x derivatives of o, ¢, and u which are independent of Tmax
and depend only on the fact that U(t) = lim u(x,t) is positive, That Thax = ** then
x*s(t)
x<s(t)
follows from the fact that for u_ small 7(t) cannot vanish for any finite time ¢,

When u_ 1is large we are also able to obtain uniform bounds for the t and x

derivatives of o, ¢, and u which are independent of Tmax' These bounds are predicated

on the lower bound estimate u(x,t) > v >0, a fact which is true if f satisties a
certain technical condition (see (2.53)) and one which is met in the special case
f(u) = £'(0)u + kouz/z when u_ 1is large.

Another goal is to obtain asymptotic information about the solution as t :joes to

uE(u ) 3
infinity., One set of results apply when ¢ = — " —— ¢ £'(0) and the associated traveling
wave is smnoth, Here we show that fi(t) dgf lim u{x,t) satisfies
x*s(t)
x<a(t)
4au ;
Ty < 0 and 1lim U(t) *+ 0 . (1.16)

| Sad

Wa also estahlish a connection hetween the solution of the Riemann Problem and the smooth

traveling wave disrussed earlier, Specifically, if we let x = x(a,t), t > T{a), be a

(’The constraint 1(t) > 0 i3 simply the Lax entropy condition for this
problem, It is easily checked that '1(0%) = uo(ﬂ) >0,
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level line of u; i.e.
uf{x{a,t),t) = a, 0<ac<u_and t > T(a) (1.17)

where Tt(a) >0 is the first time that either uo(t(u)) =a or U(t{a)) = a, and

| {
uo(t)
CAv(t) .(T_(?)_l—-ﬁ(_gﬁl g—: (a,t)da , (1.18)
0 u(t)
then we show that
uf(u_)
lim CAV(t) =c=— . (1.19)

e -

Equation (1.19) is a weak statement about the convergence of the solution of the Riemann
Problem to a traveling wave; it states that the average speed of propagation of the level

lines of u converge to the speed at which the traveling wave propagates.
uf(u )

When ¢ = > £1(0) our asymptotic results are of a different character, Here

we show that
U(t - x/c) < u <u_, cult - x/c) < alx,t) < uf{u_), and
£(a(t - x/c)) - cult - x/c) < $(x,t) < (1 = WIE(u_) (1.20)

on 0<x¢<ct and t > 0 and that the shock x = g(t) satisfies

. Yo tu_ - wEu) - )

f —_
c(c - £'(0)) G u(c _ uf(ul)
u

ct < s8(t) < ct + du . (1.21)

»
The function :(-) is the u component of the traveling wave defined earlier in item (b)
on traveling wave solutions, It satisfies (1.4) on T > 0 and the initial condition
i1.7), The inequalities (1.20) and (1.21) also guarantee that
(u_.uf(u_),(1 - Wt )), A<cc

lim (u,0,9)(At,t) = (1.22)
[Aed (0,0,0), A>c.




2. A-Priori Estimates

A. General Remarks

In this section we develop a-priori bounds which guarantee that the upper bound for

the interval of existence, T

max’ is plus infinity.

We confine our attention to the characteristic equations

ct + f'(u)cx + {1 - uo - up =0, (o)
b, - (1 -mo+up=0, (®)

and
W= (0 +¢) <==> 0+ ¢ = £(u) ()

which we insist hold in 0 < x ¢ s(t) and 0 < t < Thax* O also satisfies the boundary

condition:
a9(0,t) = uf(u_), 0<t < Thax (BC)
and (0,9) obey the Rankine-Hugoniot conditions:
s def .
lim o(x,t) = I(t) > 0 and lim ¢(x,t) =0, 0 < t < Thax
x*s(t) x*s(t)
x<s(t) x<s(t) (RH)

where
%% = Z(t)/€7 () and s(0) =0 .

If (0,4) is a solution of (o), (¢), (u), (BC), and (RH) it extends to a solution of the
original Riemann Problem (B), (C) and (1.2) by the procedure:

(u_,uf(u )y, X <0

(u,0)(x,t) =
(0,0), x >s(t) and 0 < t < Tnax *
In the sequel when we say (0,%) is a "solution” we mean it is a solution to
(o), (4), (u), (BC), and (RH). Our first task is to develop some properties of the

"solution"” of this problem. These will depend upon the entropy constraint that I(t) > 0,

0<t<T .

Theorem 2,1. Suppose (9,¢) is C{T(x) <t <T

max M 0 < x < s(Tmax)} and

51 . P 4 " ] "
c{Tix) ¢ t < Tpax aM 0 < x < s(dex)} and is a "solution". Then

ac>o, T("’itiTmax and o<x<s(1‘max) ‘ (2.1)




DO A A i A o

and

by

The function t = T(x) is the inverse of x = s(t) and satisfies

-1
ar £ (E(T(x)))
& * TGy M o =0 O

Proof. We start with the observation that (p,q) dgf (ot,ot) satisfies

Py + £1(up, - k(u)(p + )2+ (1 - wlp - ug =0,

Qe - {1 - WP +uqg =0,

p(0,t) = 0 and lim qix,t) = (1 - w)I(t) > O, 0 <t < Ty
x*a(t)
x<s(t)

Again, the u = f“‘(o +¢) and u * k{u) 1is definea by

k(u) €€ e uy/z(erun?

> 0, ox < 0, and @x < 0, T(x) .‘.tirmax and 0 < x< s('rmx) . {2.2)

(2.3)

(2.4)

(2.5)

(2.6)

Lemma 2.1. Suppose p(x,t) > 0 for T(x) < t < Thax and 0 < x < s(Tmax)' Then

q{x,t) > 0 for T(x) it-‘-Tmax and 0 < X < s(T Ve 0O

max

Proof. The lemma follows from the identity

t
-u(t-T -u(t-
alxety = (1 = I T Ly [ e85 60as

T{x)
and the hypotheses on p and I, a
Lemma 2.2. pix,t) > 0 for T(x) < tf-Tmax and 0 ¢ x < s('x‘max). [®]
Proof. We start with the observation that

-2ut ut

lim (p, + f'(u)px)(x,t) = k(uo(c))(l - u)zfz(O)e + w1 - Wko)e”

x*0 222 -2ut
= klugtentr - w2’ re

and thus we are quaranteed that p 1is positive in some domain T(x) < t irmax

0 <X < Ff, We now assume the lemma i3 false, Then there is a first time, ¢t,,

e udr - e’

t
0

and

and

point, x,, with T(x,) < t, _<.Tmax and 0 < x, < s('l‘max) such that pixe.,t,) = 0 and

(pt + f'(u)px)(x,,t.] <0 Rut, (2.4).l implies that




—

(Py + £ (WD) (x00ty) = klulx,,t,0)a2(x,,t,) + uqlx,,t,)

and thus Lemma 2.1 implies that the right hand side of the last equation is positive. This

is the desired contradiction and establishes the lemma. O
The identities
u = £_1(0 + ¢) and f‘(u)ut =p +q (2.7)
together with
f'(u) >0, p>0, and g > 0 (2.8)
imply that
-, = ox <0, T(x) < tiTmax and 0 < x < s('rmax) . (2.9)

i If we now exploit the identities

t
Slx,t) = (1 -y [ eMIES)

T(x)

o(x,s)ds ,

W)y [T goucees)

¢, = -1 - WIT (X)I{T(x))e
T{x)

ox(x,s)ds B

and

THx) = £ UT(T)))/E(T(x)) and E(T(X)) > 0, 0 <X < T,

e e o

and (2.9) we obtain
°x <0, T(x) iti'rmax and 0 ¢ x < s('rmax) . (2.10)
This concludes the proof of Theorem 2.1. 0

An immediate corollary to Theorem 2.1 is

Theorem 2.2. Under the conditions of Theorem 2.1 the following bounds prevail

0 <o <uf(u), 0<¢< (1 -wef(u), and 0 <u < u_ (2.11)
for 0 ¢ x < s(t) and 0<t< Thaxe O
Be The case where u_ is small.
We now focus on obtaining upper bounds foc (°:'°c’ = {(p,q) and lower bounds for

(o‘,ex). These estimates will rely on the assumption that a_ is small. For simplicity

we shall assume that %(u) dgf f"(u)/(f'(u))z satisfies

%% (a < 0 & (2.12)




This assumption guarantees that

., a

ko 38F k(0) > k(w), 0 cucu_ . (2.13)

The assumption (2.12) is not essential; if we abandon it, the same estimates obtain
R def
provided we redefine ko by ko = max k(u).
O<u<u
The inequalities o ﬁ."f(“_) and 0 < ¢ and the equation q = °t = (1 - u)o -~ ué
imply that
q < W1 - u)f(u_), 0¢<x<s(t) and 0 <t < T, -
Eguations (2.4)1 and (2.5) in turn imply that

py + f'(u)px j_ko(p + p(1 - u)f(u_))2 - {1 -~ u)p + u2(1 - w)flu_),

0<¢x cs(t) and 0 < £ < T (2.14)
and
p(o,t) = O, 0 <t < T - (2.15)
Moreover, if
(-
flu) ¢ ax, (2.16)
then (2.14) may be rewritten as
%+PM&i%w-ww-mL Mx<Mﬂam0<t<%x (2.17)
where
o<p -.il_:_El - {1 - u)f(u ) - - /q; - u)2 - 4k _u(1 - m)f(u ) <
- 2k - 2k 0 -
0 0
0 -u A/ )
p, = % - u(r - Wf(a ) + 2k0 (1 - u)" - 4k°u(1 - u)f(u ) . (2.18)

An immediate consequence of (2.15) and (2.17) and the bound q < u(t - wf(u ) is

Theorem 2.3. If u_ satisfies (2.16), then

{1=-1) 1 2
4, £ wCi-n)f(u ) and o, 5"355' - u(i-u)f(u ) - 5?; -7 - Ak u(i-p)fu_) . (2.19)
Moreover, the identities
a, =y = -(p + q)/E'(u) {2.20)

and

~9-




TG oy T e

b = =(1 - WEI(T(x)) e o (x,8)ds (2.21)
x x
T(x)
imply that
1 2 h
9,2 3?;?7(67 (-1 = w) /Q} -uw - 4kou(1 - wiftu) ) (2.22)
and
o> (1w e (ETO)
(2.23)

(1-1) -u(t=-T(x))
-

Ji1an? '
-W (1-u - Y(1-p)" - 4kou(1-u)f(u_) )(l )} . 0O
3
Remark 1. If we assume that f satisfies the additional hypothesis §_§ < 0, then we
du
find that if (2.16) holds the following inequality must also prevail:
uf(u_)
c = < £'(0) o (2.24)
u
a3t
Thus, if (2.16) holds and — <o the traveling wave associated with the states
du

(u_,uffu_)) and (0,0) at x equal minus and plus infinity respectively is the smooth
one described in Section 1. O
The results of Theorems 2.1-2.3 imply that if (2.16) holds, then the functions
a, ¢, ot, °t' ox, and ’x are uniformly bounded independently of Tmax so long as
Z(t) >0 for 0 < t < T, .. Thus, if (2.16) holds, the only way for T, .,  to be finite

is if I satisfies

lim X(t) =0 . (2.25)
teT
max

Theorem 2.4. The function I(t) dgf lim 3(x,t) cannot satisfy (2.25) for any finite

x*s(t)
Thax® ] x<s(t)
Proof. Suppose the Theorem i3 false. Then, there is a first finite time, T > 0, such

max

that I(t) >0, 0 <t < T and (2.25) holds. To show this cannot happen we obs:zrve

max’

that




'”:—z- (0, + 50 )(s(t),t) = (1 - WE(t) + o (s(e), ) (=L _ evee (o)) (2.26)
At t X x E"(E)

where ox(s(t),t) = lim 6 (x,t). The a-priori bound

x*s(t)

x<s(t)

-
ey Ly - f Y - )
(6 (v-w =70 ow® - 4kt - wfta) ) <o <0, 0<x<8(t) and
0t < Toanr together with the uniqueness theorem for ordinary differential equations,
applied to (2.26), imply that if lim L{t) = 0, then I(t) =0 for O St < Tpaye
>
max

This contradicts the fact that lim* L(t) = uf(u_) > 0 and establishes the Theorem. O
Summarizing the results of :h?s subsection we obtain

Theorem 2.5. If u_ satisfies (2.16), then Tmax = ¢, and the bounds of Theorems 2.1-

2.3 obtain. W]

Cs The case where u_ is large.

We now turn to the case where u_ is large, We start with a lower bound estimate for {
the shock, x = s(t). This estimate is valid for all u_ > 0, but it is only useful

when u_ is large.

Theorem 2,6. The shock curve x = s(t), 0 < ¢t f.Tmax' satisfies
uf(u )
s(t) > ct where again ¢ = - . o (2.27)

Proof. The conservation law u, + ox = 0, boundary condition 0(0,t) = uf(u_), and
Rankine-Hugoniot condition (RH)} imply that

4 s(t) s(t)

= f ulx,t)dx = uf(u ) and [ a{x,t)dx = uflu )t . (2.28)

d¢ 5 - 0 -

The upper bound u(x,t) ¢ u_ for 0 < x < s(t) and 0 <t £ Thax COmbines with (2.28),

to yield the desired result, i

-t
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In the remainder of this subsection we shall assume that

)
—u—‘-— > £'(0) . {(2.29)
Our next theorem provides lower hounds for o, ¢, and u on the domain 0 Lx<ct and
0 <t < Thay
Theorem 2.7. Let (0,6,u) be a solution of (0), (¢), (u), (8C), and (RH). Then the
following lower bounds prevail:
I(x,t) > cu(t = x/c), $0x,t) > £(A(E = x/c)) - cult - x/e)'),
and u(x,t) > u(t - x/c) (2.30)

on the domain 0 ¢ x ¢ ct and O ¢t £ Thax* The function ;(') is the u component of

the traveling wave described in Section 1 and satisfies

~

(£9(0) - ¢) 32 = (cu - uE(E)), T>0, and §(0) =u, >0, (2.31)
where
f(u,) uf(u_)
u, =C = v ’ (2.32) {
and the triple
(9,4,u)(x,t) = (cu,£(8) - cu,u)(t - x/c) (2.33)

is the unique solution of (0), ($), and (u) satisfying the boundary conditions
3(0,t) = cult) < uf(u_) and glct,e) =0, O<t. O (2.34)
Remark 2. The function ;(-) may be extended to the interval [-T(c),®) as a solution of

(2.31), The number Tt(c) > 0 is given by the quadrature formula

u
*
(£*(u) - c)du
T(c) = | et T (2.35)
ale) (cu - uf(u))
and 0 < u(c) 1is the unique solution of
uf(u_)
£t(u(c)) =c = R YEER) (w] (2.36)

‘)The strict inequality for ¢ fails at (x,t) = (0,0) where ¢ = 0.

-12~




Remark 3. The triple (g,l,g) defined by (2.33) solves (0), (¢), and (u) and satisfies

the ini{tial-houndary conditions

(9,4)(x,0) = (cu,£(d) - cu)(-x/c), O ¢ x < etlc) (2.37)
and
3(0,t) = cult) and ¢lcit + T(c)),t) = £(u(c)) ~cule) <O, t>0. (2.38)

Moreover, for any curve x = p(t) satisfying ct ¢ p(t) < c(t + T(c)) we have
$plt),t) < 0.

Proof of Theorem 2.7. We first observe that if (o,¢,u) solve (0), (¢), (u), (BC), and

(RH), then the properties of \A:‘(-) and the fact that c¢t < s(t) imply

9(0,t) = cult) < 0(0,t) = uf(u ), 0 <t < Tppye s (2.39)
and
$lct,t) = 0 < dlet,t), 0 <t < Thag * (2.40)
Lemma 2.3, Suppose 0 <0 on O < x <ct and 05_t<'l‘max. Then ¢ < ¢ on 0<x<ct
and 0 < t < Ty, .o o
Proof. The lemma follows from (2.40) and the identities
~u(t-x/c) £ -u(t-s)
plx,t) = ¢(x,x/C)e +(1~w [ e a(x,s)ds
x/c
-u(t-x/c) £ ~u(t-s)
> ${x,x/cle + (v ~w) f e O(x,s)ds , (2.41)
x/c
L_ and
? t -p{t-s)
; 80x,t) = (1 =) [ e %oy, 9048 o (2.42)
. x/c
2 ;
% The preceding lemma together with (2.39) imply
$(0,¢t) < ¢lo,t), t >0 (2.43)

- and (2.39), (2.40), and (2.43) are sufficient to guarantee the Theorem is true in some
; naighborhood gi‘ime and 0 < x ¢ € with the caveat that ) = ¢ = 0 at the

origin. We now suppose the Theorem is false, Than there is a first time t, and point

=13~

o br . e e

| P———— e e s .
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Xa

X4 With 'c—-i t < Thax and € < x, < T such that o(x,,t ) = o(x,,t ). Moreover,

at (x,,t,) the following inequalities hold:
) 3
('5? + f£'(u) s"x') (Oﬂ)(x.,t.) _<_ 0, (°’2)(x'rt.) > 0, and (u'_“_)(x.'t.) > 0. (2.44)
The latter two inequalities follow from Lemma 2.3 and the relations u = f'1(o + ¢) and
u = f"(g + $)o A little algebra shows that
] 2
(g + £ 5] (0-0) (0, 8,0 = u(9=0)(x,0t,) + 0, (x, e )£ (0) = £1(u))(x,,t,)
and this identity, together with (2,44), the hypothesis f" > 0, and the fact that
au
gx(x.,t‘) = =C T (Tt = t, = x/c) < 0 yield the contradictory inequality

(§€ + £'(u) g;)(o - 0)(x,,t,) > 0. This completes the proof of the Theorem. a

Our next task is to obtain an upper bound for the shock curve x = s(t). We start

with the identity

s(t) ct
ulx,t)dx = uf(u )t = [ u_dx (2.45)
0 0
t
which we rewrite as
s(t) ct
ulx,thdx = [ (u_ - ulx,t))dx . (2.46)
ct 0

If we now exploit the inequality u, < 0 and (2.30)3 we obtain

s(t) ct 1 t -
u{s(t),t)(s(t)-ct) < f u{x,t)dx = f (u_-u(x,t))dx < E-f (u_-u(r))dt
ct 0 0

4(T) (u_-u) (£ (u)=c) Y- tu_-u) (€1 (u)-c)

1 1
=z ECEHOI R R Tale~uf(u) /u)
u, u,

du (2.47)

where
- £lu,) uflu_) ]
u(s(t),t) = lim u(x,t) = £ (I(t)) and c = m (2.48) ;

x*s(t) * -
x<s(t) i

and ;(-) is the function defined in (2.3t)., The Rankine-Hugoniot aquation

~14~




ds  f(u(s(e),t))

R : def
* - el (t).0) together with (2,47) imply that y(t) = 8(t) - ct satisfies

u

dy f"“|ax - (u_ - u)(f'(u) - c) 1
< ~te - €10 + ( % | CRRT YT du) 7 (2.49)
]
and y(0) = 0. The number f;ax is given by frax = Max f*(u). An immediate
Qﬁpﬁp_
consequence of (2.49) and y(0) = 0 |is
Theorem 2.,8. The shock curve x = s(t) satisfies
s(t) ¢ ct + cl(c), 0 <t < Tpay * (2.50)
where
£ Yo (u_~ w)(Er(u) - )
lc) = nax = du . 0 (2.51)
2e - f,(0”(:2 u, u(e - uf(u)/u)
k°u2
Remark 4. If we restrict our attention to the case where f(u) = £'(0)u + 3 it is
easily established that the numbers T(c) of (2.35) and §&(c) of (2.52) satisfy
2 b (c-fr(0)} {(2-u)e-uf'(0) ulc=~£t(9))
ey et (- 3 e Snae ) - Sy o9 2 s (2.52)
S() 2c{1-1) . u(c-£1(0)) ‘
07+ temtr o es( Tty
uniformly on f£f'(0) << ¢ and 0 ¢ 1 ~ u << 1, m

Motivated by the results of Remark 4 we shall make the following additional assumption

-}:-f:—; > 1 (2.53)

uniformly on £'(0) << ¢ and 0 < 1 ~ u < 1. m]
Using the results of Remark 3 and the arguments used to establish Theorem 2.7, one

easily obtains

uf(u )
Theorem 2.9. If (2.53) holds, then for f'(0) <C Cc = = the conclusion of Theorem 2.7
are valid on the domain 0 < x < s(t) and OitiTmax' m}

Our final task in this subsectinon is to ohtain upper bounds for p = ot and q = oc
and lower bounds for Ox and o‘. Throughout, we shall assume that
(1) dif f'(u)/(f'(u))2 is decreasing on u 2_0. We alan assume that (2.53) holds and

that » > €'(0) 1is large enough so that the conclusions of Theorem 2.9 hold. Finally, we

-15-




P aaatd

shall assume that

daf uf'(u) - €(u)

j(u) ‘= i > 0, 0<u (2.54)
satigfies
4
a5 () >0, 0<u, (2.55)

F our goal is to show that subject to the ahbove hypotheses, there is some 0 < A < u

such that the functions p =g and q = ot satisfy

t

pix,t) = e METEN L0 &), and (2.56)
T™(x) ¢ t < Tm. ’
0<x<sit ™y

qix,t) = e-x(t-T(x))Q(x,t) - max (2.57)

where P > 0 and O > 0 are bounded independently of Tnax® Again, t = T(x) is the
inverse of the shock x = s(t),
i It is a relatively simple matter to show that if p and q are given by (2,56) and

(2.57) and satisfy (2.4) and (2.5), then P and Q satisfy

P + £ (WP, < ke M ETEN L )2 Ly agane w0, (250
and !
Qe = (1 = WP - (u - Ao, (2.59)
in the domain 0 < x < s(t) and 0 < t < Tp,,r and
P(O,t) = 0 and lim Q(x,t) = (1 - w)i(e), 0 ¢t < Ty (2.60)
x*s(t)
x<s(t)

The results of Theorem 2.1 guarantee that P and Q are positive on 0 ¢ x ¢ s(t) and
0<t« Thax while the results of Theorem 2.9 and (2.53) guarantee that
u(x,t) > ule) >0, O0<x<s8(t) and 0 <t < T (2.61)

where again u(e) is defined hy

£ (u(e)) = ¢ (2.62) ]

and lim u(c) = +#°, The inequality (2.61), when combined with the hypotheses

cre ak ﬂl
a—;(O and du)O,

and the results P > 0 and Q9> 0 for 0 < x < s8{t) and 0 ¢ t < Tnax imply that P

and Q satisfy the inequalities




Py + £1WIP, < K(P + % - (1 - w e AIP + W0, (2.63)
Op = (1 = uIP = {1 - Mo, (2.64)

on the gsame domain. The numbers 5_ and l_ are defined by
k = k{ufc)) and 0 < j = jlule)) . (2.65)

Remark 5., If we restrict our attention to the cagse f(u) = f'(0)u + kou2/2, then

) 3 k u
0 (c - £'(0))
k(u) - Y j(u) - _.—__._—_._' "_'(c) » —_——,
(£'(0) + kou)z QI + kw) X,
and lim (k(u(c)),jlule))) = (0,1). O

[ohand
Motivated by the last remark we shall assume that k(°) and j(¢) satisty

lim (k(u(c)),i(u(c))) = (0,1) . (2.67)
cre - -
We now turn to the inequalities (2.63) and (2.64). Throughout, we assume that
0 <A< u. It is easily checked that the set P > 0 and 0> O such that

5(p+o)2-(1+x1-u)p+no-o is given by

Q = Q(p) def -p +l—lu2+dl_t_(1 +A3) -y, 0<P <t &2y -uw (2.68}

2

and that

K(P+ 02 - (1 +3 -uP +u0 ¢ 0, 0 COCOP) and O <P () ¢} -u). (2.69

It is also a simple matter to verify that if (u - 2)j - (1 W) > 0, then the right hand

sides of (2.63) and (2.64) vanish simultaneously at (Peq'oeq) where
My = N0 - g - (1 =)
P = >0, (2.70)
e
9 (- oA
and
My - - D - 0 =)
= -— >0 . (2.71)

Qe
N (- vk

We now choose ) so as to maximize Q.q(l). The result is

uj - (v - ) iy o+ 3) -t

O Rt e peari i P s i (2.72)

-17-

[TNUNPVOTH SN SO S,




Substitution of (2.72) into (2.79) and (2.71) yields

def (Wi+t+u) (ui - (1-u)(2(20-1) - (1-3)(2u=1+u(1+§)))
P i) e ) . . (2.73)
a max at(2-w)3 + Q= Oa A

and
def (13 - Cr-w)(2(2u=-1) - (1-3)(2u-14u(14j)))
Oeq(u.l) = oeq(xmax) - . (2.74)
a0+ %
and these formulas, together with (2.67), imply that if 0 < 1 = u << ¥ =29: » ‘o) <€ €,

then Peq(u,j) and Oeq(u.j) are both positive; in fact we have

< 3
Lin (kP (b3 )ikO (1)) = (5o ) (2.75)

ur1”

§

Our final task is to obtain conditions which guarantee that P < P,q(u,i) and
‘ 0« Qeq(u,j) for 0 < x < s{t) and 0 <t ¢ T, . The fact ths%

lim o(x,t) = I(t) < uf(u_) for 0 < t < Tnax together with the boundary condition {
x*s(t)
x<s(t)

lim Q(x,t)
x*s(t)
x<s(t)

(1 - u)Z(t) guarantee that Q < ¢ (u,j) on x = s(t) provided
eq "1

(W3- (1-u))202u=-1)-01-3 ) (2u=1+u(143)))

{1 -uif(u_ ) < oeq(u,i) or ul1-pkfln_) ¢ —----

5 . (2.76)
40143)

uf(u )
Moreover, the hypotheses on f, k, and j guarantee that for c = ft(ufc)) = - -

sufficiently large the last inequality holds provided 0 ¢ 1 - y << 1. With these

preliminaries we are now in a position to prove
Theorem 2.10. Suppose the functions k > 0 and j > 0 satisfy dk/3u < 0 and
dj/du > 0 and that (2.67) holds, Suppose Further that f£'(0) << ¢ and 0 < 1 = u << 1

are such that (i) (2.53) holds, (ii) that the functions Peq(u,lj and oeq(u,l) defined

; in (2.73) and (2.74) are both positive, and (iii) that (2.76) holds, Then the functions
o~ (1 -

R

P and O defined in (2.56) and (2.57) with 1\ = > 0 satisty




0 < Plx,t) < P, (w3) and 0 < Q< Q. (W] ) (2.77)
for T(x) <t ¢ T, and 0 < x ¢ S(T ,.). 0 {

Proof. The lower bounds follow from the results of Theorem 2.1 and as previously

observed Q satisfies the desired upper bound on the bhoundary x = s(t), O <t< Tmax'

The identity lim_ Q(x,t) = u(1 - u)f(u_)e'“"’”t together with (2.76) and
x>0
200 - w3
(u'“'(z-u)j_+1-u>° imply that Q(O,t)<Qeq for 0£t_<_'rnax. The

differential inequality (2.63), together with (2.64) and the results summarized in (2.68)

and (2.69) imply that the upper bounds cannot fail in T(x) £t< T, and

0 < x < 8(T, ) and this concludes the proof. 0 3

max

Lower bounds for ox and °x are readily obtainable from the upper bounds for Gt

and ot. The results are that if the hypotheses of Theorem 2.10 hold, then

, e-).(t-‘r(x)) (Peq(u.j_) + Qei(u'i”

0x - €°(0) (2.78)
and '
~p(t=T(x)) (1-p) . . “A(t-T(x)) _-u(t-T(x))
¢, 2 -(1-ulu e <y (Peglrd) + Qqlurjlife -e ) (2.79)
u - (1 - )
for T(x) < t < T,y and Oixis('l‘max) with ) = FRPE R Ty > 0 and
201 - w)yj
(B = )) = > 0. Finally, since the bounds of Theorems 2.7 through 2.10

2=mj +1 -4

and the inequalities (2.78) and (2.79) are independent of Tm we obtain

ax’
Theorem 2.11. If the hypotheses of Theorem 2.10 hold, then me = +° and the bounds of
Theorems 2.7 through 2,10 and the inequalities (2.78) and (2.79) hold with Tnax - 4o, 0

This concludes Section 2.




3. Asymptotic Results

A. The case where u_ is small

In this section we shall assume that (2,12) and (2.13) hold., We shall also assume

that u_ is small enough so that {2.16) is valid. Our goal is an asymptotic estimate

for U(t) dgf lim u(x,t). The Rankine-Hugoniot conditions (1.11)-(1.13) imply that U
x*s(t)
x<s(t)
satisfies
du £(U) (1 - uwif(u)
3e = Utste), (- uf,(U)) - —FTO) ana u(0) = v, , (3.1)
where
aes(8),8) = Lm0 008 < gty (0 = w -0 < w? -t - we) ), (3.2)
x*s(t) 0
x<s(t)

and 0 < uy < u_ is the unique solution of
fluy) = uf(u) . (3.3)

The fact that kof'(o) = £*(0)/£'(0) and the inequalities

a-w-Ja-w? A gult = WIE(u_) < 4k uEla ) < (1 - u) (3.4)

when combined with (2.16), (3.1), and (3.2) yield

du £00) (, | _£W) ) _£(0))

k< 0 -wiEer O - 55 m) - 7o

and u(0) = v, . (3,5)

The fact that

dgf _£100) (\  _£(U) ) £(V)

h(W) =" 5&wtoy ' - oEruy) T E o) (3.6)

satisfies
h(0) = 0 and %ﬁ (0) = -3/4 ¢ 0O
i}
guarantees that if uy and hence u_ are small, then U(t] + 0 as ¢t * ®; in fact for
A
ug small lim e tU(t) =0 for any 0 < A < -3/4. 1In the special case where

tr=
£(U) = £°(0)) + k002/2. it is easily verified that

(3£ (0)U + 2k0u2)
AET(OT + K00

h{U) = -

<0 (3.7)

and thus no additinnal cestrictions on ug dre required,




We conclude this subsection by showing that when ua_ is small (in particular small

enough go that U(t) * 0 as ¢t * ®) the solution to (B), (C), and (1.2) converges, in a
weak sense, to the traveling wave described in Section 1. Specifically we shall prove
Theorem 3.1. The average speed of propagation of the level lines of u converqge to the

speed of the traveling wave; that is the function

uo(t) 1
Caylt) "E—Tgy—ljjref J g% (a,t)da (3.8)
0 - u(e)
satisfies
uf(u )
lim cAv(t) = (3.9)

(2] -

The function wu,(t) is defined in (1.9), For numbers O < a ¢ u_, the curve

x = x(a,t), t > t(a), is a level line of wu; that is it satigfies u(x(a,t),t) = a.

For 0 < a < uo(O), t(a) is defined by U(t(a)) = a and for uo(O) <ac<u_, r(a) solves
uo(f(a)) - a, 0

Proof. Our first task is to show that

uf(u_) - £(U(t))
uo(t) - u(t)
To obtain (3.10) we note that the defining relation u(x(a,t),t) = a implies that

CAV(t) = . (3.10)

ux, = 1 and 4, + x,u, = 0. If we now define I{a,t) = o(x(a,t),t), we see that

2a(a,t) a oxxa and this, combined with u, = -0, and x, = U X yields the

conservation law:

xt(a,t) = Za(a,t), ult) _<_a£uo(t) . (3.11)
Equation (3.10) now follows from (3.8) and (3.11) and the limit relation, (3.9), is a
consequence of (3.10) and lim (U(t),u4(t)) = (O,u_). 0

0

B. The case where u_ is larqe

To obtain the asymptotic result




uf(u-)
{ {u_,uf(u ), (1 - Wf(u N, Acc= -3
lim (u,9,4)(Ae,t) = - (3.12)
(X2 ut(u )
: | (0,0,0), A>ecom ——

all that is required are the lower bound estimates (2,30), the inequalities (2.27), (2.51)

and (2.52), and the assumption that Tmax x + (which we know is true if the hypotheses of

Theorem 2,10 hold)., When X > ¢, the curve x = At satisfies

s(t) < At (3.13)
£ Yo - wEr ) - o) ot
for times ¢t > O T - oS £ CRRTITSITY du = T(Me). Thus

-

(u,s,d(x,t) T 0 for s{t) < x and t > T(A,c) establishes (3.13)2. That (3.13)1 holds

follows from (2.30) and the fact that when 1\ < ¢

lim 90t =2 ) = lim 3(1) = u . (3.14)
trw ¢ I »o -

C. Concluding remarks and open questions

As was mentioned earlier, we have succeeded in showing that when u_ is small,
cAv(t) converges to the speed ~f the traveling wave. One would also like to know if this

result is true when u_ 1is large, The result would follow from (3.10) provided we knew

that when u_ was large, (¢t} aef 1im u(x,t) converged to the number u, (defined hy
x*s(t)
x<s{t)
flu) ut(u_)

" = —TT——J as t approached infinity. At t?e moment this is an open question (and
» - f(u
is equivalent to establishing that lim s(t) = . Y.

t o Yo

Assuming for the moment that lim 1M(t) =
tr® . 0. uf(u Jru < FO(O)

., uwf{u )/u_ > £'(0)
and hence that

wfin )

lt: CAV(C) = -::T—- we woultl also tike to know whether o(u,t) = xt(u,t) = :a(a,t) (302




uf(u_) u, < a<u_ when uf(a_)/u_ > £(0)

(3.11)) satisfies 1lim c(a,t) = 3 for .
tro - 0O<ac<u when uf(u_)/u_ < £'(0)

Finally, we end with a tantalizing calculation which would bhe sufficient to guarantee

uf(u )
that lim U(t) = u, when — > £'(0). The differential equation
e -
au £(U) L _£W)
ac “t(S(F)’t)(1 - Uf'(U)) -0 -
together with the identity
f'(U(t))ut(S(t),t)
ctuled®) = St o v (-t
implies that U satisfies
18} (1 = w{c(u(t),t)ul(t) - £(u(t))) _
at - (E7(0(e)) = o(u(er,en) and (0] = ug (3.13)

where again c¢(a,t) dsf xt(a,t) = Za(a,t) and uy is defined in (3.3). If we now knew
uf{u ) - £F(U)

-u—o-m satisfied

that cpy(t) =
cpylt) < c(ule),t)

then the inequality uo(t) < u_ and (3.15) would imply that U okeys the inequality

(v - w)(pf(u_ U - f(U)u_)
(£' () u_ - U) - (uslu) = £(U0)))

dy
dt

> and U(0) =u, . (3.16)

An immediate conseguence of (3,16) is that U(t) > u, for all t > 0. At this point we

would be able to conclude that 1lim U(t) = u,., The result would follow from the upper and

£ »0
v
lower bounds for the shock curve (see (2,50)) and from the fact that %% is uniformly

bounded on [(0,®),
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